Historical and Current Water Resource Management in Indonesia: a case study on Jakarta’s coastal area

Chay Asdak, Ph.D.
Coordinator for Postgraduate Program on Environmental Studies,
Universitas Padjadjaran
Jalan Dipati Ukur No. 35 Bandung 40132, Indonesia
Tel/Fax: +62-22 7271455; e-mail: casdak@unpad.ac.id

4 March 2015, Tokyo University, Japan
Outline of the Talk

1. Jakarta flooding and flood control infrastructures
2. Upstream land use change and flooding downstream
3. Future development plan for Jakarta’s coastal area
Jakarta: Natural and Man-made Threats

Constraining Factors:

- Jakarta is located on a low-lying flat coastal area [40% lower than the surface of the sea] → backwater effect during rainy season.

- **13** rivers flowing and transferring large amount of rainwater into the city of Jakarta.

- Middle and upper parts of the Ciliwung watershed produce large rainfall of ranged between 2,500 – 3,500 mm/year.

- Unintegrated transboundary [upstream-downstream] zones planning including institutional and financial arrangements for transboundary problem solution.
13 Rivers/Canals Flowing in the Java Sea

FURTHER READING:
- Report B1 (Engineering report), report C1.2 (Water Balance) and report C1.6 (Retention Lake Analysis) provide information on the size of the retention reservoir.
- Report B3 (Spatial planning and Urban Design) provide information on the landfalls, infrastructure and regional socio-economic opportunities.
Environmental Issues Faced by Jakarta

Flooding distribution:
- 1992: 61 location
- 1996: 90 location
- 2002: 159 location
- 2005 dan 2007: increased considerably in volume and distribution

Land Use Change
- 1940: 184 (2,120,5 ha)
- 1994: 129 (576,5 ha)

Decreased in water reservoir:
- 1996

Land Subsidence

River water pollution

Fluctuated river flow:
- Qmax/Qmin change from 20 [1996] → 544 [1998]
History of Political and Infrastructure Changes in Jakarta

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hindu and local religion</td>
<td>Islam</td>
<td>Islam</td>
<td>Islam</td>
<td>Islam</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Political ruler</th>
<th>Sunda Kingdom</th>
<th>Cirebon backup by Central Java</th>
<th>J.P. Coen collaborate with local land lords [72 sugar & 117 other companies]</th>
<th>Transition to the independent of Indonesia [1945] and current democratic government</th>
</tr>
</thead>
<tbody>
<tr>
<td>King Surawisesa</td>
<td>Suster Demak</td>
<td>J.P. Coen collaborate with local land lords [72 sugar & 117 other companies]</td>
<td>J.P. Coen collaborate with local land lords [72 sugar & 117 other companies]</td>
<td>Transition to the independent of Indonesia [1945] and current democratic government</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Canal for water transport and drying up wet lands</th>
<th>810 m</th>
<th>1,825 m</th>
<th>3,250 m</th>
<th>See separate slides</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Flood control infrastructures</th>
<th>Canal</th>
<th>Canal</th>
<th>Reservoir, west canal, river regulators & Polders</th>
<th>Reservoir, west and east canals, river regulators, pump & polders, recharge wells, RWH, proposed deep tunnel</th>
</tr>
</thead>
</table>
Batavia in **1619** under control of J.P. Coen, president of the VOC [Verenegde Oost Indische Compagnie]

- Gede Mountain
- Pangrango Mountain
- Salak Mountain
- Hollandia Fortress
- Ciliwung River
Peta 8
KOTA BATAVIA,
TAHUN 1672

Source: Ministry of Education and Culture [1983]
Batavia in 1935

Developed Areas

Rice fields

Swamp

Wet lands

Ciliwung River
The back shift of Jakarta's Coastal Line
[Sea level rise more dominant than river sedimentation]
Flooding in Batavia/Jakarta

1918

1932

2002

2005
Flooding Distribution in Jakarta [1965]

Flooding was mainly distributed along the Ciliwung River.
Comparison of Flooding in 2007 and 2013

PERBANDINGAN BANJIR 2007 & 2013

<table>
<thead>
<tr>
<th>No.</th>
<th>KRITERIA</th>
<th>2007</th>
<th>2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Luas Genangan</td>
<td>231.8 KM2</td>
<td>41 KM2</td>
</tr>
<tr>
<td>2</td>
<td>Prosentase terhadap luas DKI</td>
<td>45%</td>
<td>8%</td>
</tr>
<tr>
<td>3</td>
<td>Jumlah Pengungsi</td>
<td>320.000 jiwa</td>
<td>18.018 jiwa</td>
</tr>
<tr>
<td>4</td>
<td>Korban Meninggal</td>
<td>80 org</td>
<td>20 org</td>
</tr>
</tbody>
</table>
Groundwater mining in Jakarta [1879 – 2007]

Penyedotan (juta meter kubik / tahun)

Jumlah Total Sumur

Penyedotan Jumlah Sumur

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000

0 5 10 15 20 25 30 35 40

Land Subsidence in Jakarta 1974

- 4.04 m
- 3.22 m
- 2.42 m
- 1.61 m
- 0.80 m
- 0.25 m
- 1.4 m
- 2.1 m
- 4.1 m
In 1918, Dr. Van Breen of Departement Waterstaat proposed an integrated flood control in the form of flood canal [west flood canal]
Form of Flood Control:

1. **Flood canals** → West flood canal protecting 7,500 ha flood area and proposed east canal protecting 36,500 ha flooding area

2. **Main drainage system** → natural flowing water [gravity driven water flow]

3. **Pump and polder system** → pumping water out to protect a total of 24,000 flooding area.
Master Plan of Flood Control in Jakarta [1973]
Jakarta Emergency Dredging Initiative
(Jakarta Urgent Flood Mitigation Project)

JAKARTA URGENT FLOOD MITIGATION PROJECT (JUFMP/JEDI) Package 2A IBRD LOAN NO.8121-ID

DATA TEKNIS
- Luas DAS = 459 km²
- Panjang Sungai Utama (L) = 7.9 km
- Panjang Sungai Yang Ditangani = 7.8 km
- Lebar Sungai = 60 - 70 meter
- Debit Existing = 300 – 340 m³/det
- Debit Banjir Rencana (Q50) = 566 m³/detik
- Sumber Dana = IBRD LOAN No.8121-ID

MANFAAT PEKERJAAN:
Meningkatkan Kapasitas Sungai dan Penataan Kawasan
Transfering water from Ciliwung river to East Canal

SUDETAN KALI CILIWUNGA KE KANAL BANJIR TIMUR

DATA TEKNIS:
- PANJANG SUDETAN = 1,27 Km
- JUMLAH PIPA = 2 Buah
- DIAMETER DALAM PIPA = 3.5 M
- DIAMETER LUAR PIPA = 4.0 M
- TIPE ALAT BOR = EPB dia 4 M 2 Unit

MANFAAT:
Mengalirkan sebagian debit Banjir Kali Ciliwung sebesar 60 m3/det

LOKASI: DKI JAKARTA
Alt 1. (Studi Nikken 1997)
- Jarak Inlet Sudetan ke Katulampa ± 3,5 km
- Panjang Sudetan ± 1 km
- Ø 2 x 8.1 m
- Q = 2 x 300 m³/dtk

Alt 2. (Studi FHM 2013)
- Jarak Inlet Sudetan ke Katulampa ± 0,2 km
- Panjang Sudetan ± 2.9 km
- Ø 1 x 6.5 m
- Q = 1 x 100 m³/dtk
NORMALISASI KALI CILIWUNG LAMA
Lokasi Pekerjaan : PA. Manggarai – Jemb. Masjid Istiqlal
Panjang : 8.5 KM
Lebar Penampang : 15 m – 20 m
Debit Banjir : 70 m³/det

MANFAAT PEKERJAAN:
Meningkatkan Kapasitas Sungai dan Penataan Kawasan

LOKASI:
DKI JAKARTA
Reconstruction of Water Pump for Pluit Reservoir

DATA TEKNIK POMPA EXISTING
1. Pompa Pluit Timur (P1) (sedang Rekonstruksi)
 - Kapasitas : 3 x 5 m³/dt = 15 m³/dt
 - Operasi : 0 x 5 m³/dt = 0 m³/dt
2. Pompa Pluit Tengah (P2)
 - Kapasitas : 4 x 4 m³/dt = 16 m³/dt
 - Operasi : 3 x 4 m³/dt = 12 m³/dt
3. Pompa Pluit Barat (P3)
 - Kapasitas : 3 x 6 m³/dt = 18 m³/dt
 - Operasi : 1 x 6 m³/dt = 6 m³/dt
Total Kapasitas Maksimum Pompa = 49 m³/dt
Total Kapasitas Operasi Pompa sekarang = 18 m³/dt

Lingkup Pekerjaan Renovasi Pompa Timur (Pompa Baru 3 x 5 m³/det)

1. Rekonstruksi Stasiun Pompa Timur
 - Ruang pompa timur : Struktur beton bertulang L 15,6m x W 11,0m x (D 10m + H 12,7m), Pondasi Pipa Baja
 - Pekerjaan Bangunan : Beton Bertulang 3 Lantai, Luas lantai 350m², Pondasi Pipa Baja.
 - Struktur Inlet : Struktur Beton bertulang, Pondasi Pipa Baja.
 - Struktur Terowongan Pipa pembuangan
 - Struktur Pipa Muara
2. Pemasangan Sarana Pompa di Stasiun Pompa Timur
 - Sarana Pipa Pembuangan (Kapasitas 5,0m³/dt) : 3 Unit
 - Sistem saluran pipa di atas tanah (dia 1.500mm) : 3 set
 - Sarana Generator Darurat (1.500 kVA) : 1 set
 - Saringan dan alat pembantu : 3 unit
 - Alat pengangkut horizontal
3. Konstruksi Tanggul Air Pasang Laut di depan semua Stasiun Pompa
 - Cantilever Steel Sheet Pile dan Tanggul jenis Counterweight sepanjang ± 145m
 - Pekerjaan pengerukan
 - Pekerjaan pengaman dasar laut
Proposed Development of Ciawi and Sukamanah Reservoirs

Bendungan Ciawi
- Luas DTA: 88.50 km²
- Luas Genangan: 32.82 ha
- Vol. Tampungan Maks.: 6.45 x 10^6 m³
- Tipe Bendungan: Urugan
- El. Puncak Bendungan: El. 551.00 m
- Tinggi Bendungan diatas fondasi: 55.00 m dan diatas dasar sungai: 51.00 m
- Panjang Bendungan: 341.00 m

Bendungan Sukamahi
- Luas DTA: 15.86 km²
- Luas Genangan: 8.2 ha
- Vol. Tampungan Maks.: 1.707 x 10^6 m³
- Tipe Bendungan: Urugan
- El. Puncak Bendungan: El. 601.00 m
- Tinggi Bendungan diatas fondasi: 47.00 m dan diatas dasar sungai: 47.00 m
- Panjang Bendungan: 198.00 m

(sumber: Studi Kons. BBWS CC, 2014)
Flooding in Jakarta: Upstream Ciliwung watershed degradation and back water effects
THE IMPACTS OF AGRICULTURAL DEVELOPMENT LEADING TO HOMOGENIZATION OF THE AGRICULTURAL LANDSCAPE IN WEST JAVA → INCREASING RUN-OFF AND SOIL EROSION/RIVER SEDIMENTATION

Degraded soil in West Java > 75% is in private lands → Big challenge to successful soil and water conservation programs
Typical erosive agricultural practices in private lands, West Java
Land use change in the Upper Ciliwung Watershed (1990-1999)
Land Use Change in Ciliwung Watershed [2002-2009]

Source: Sriharto (2011) in *Kompas*, 3 April 2012

<table>
<thead>
<tr>
<th>Land Use</th>
<th>2002 (%)</th>
<th>2009 (%)</th>
<th>Land Use Change (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rice field</td>
<td>11.7</td>
<td>0.5</td>
<td>-11.2</td>
</tr>
<tr>
<td>Plantation</td>
<td>0.3</td>
<td>24.5</td>
<td>24.2</td>
</tr>
<tr>
<td>Forest</td>
<td>25.8</td>
<td>6.2</td>
<td>-19.6</td>
</tr>
<tr>
<td>Grassland</td>
<td>0.5</td>
<td>8.6</td>
<td>8.1</td>
</tr>
<tr>
<td>Shrubs</td>
<td>19.0</td>
<td>0.2</td>
<td>-18.8</td>
</tr>
<tr>
<td>Settlement</td>
<td>42.3</td>
<td>59.7</td>
<td>17.4</td>
</tr>
<tr>
<td>Water bodies</td>
<td>0.4</td>
<td>0.3</td>
<td>-0.2</td>
</tr>
<tr>
<td>Wet lands</td>
<td>0.1</td>
<td>0.2</td>
<td>0.0</td>
</tr>
</tbody>
</table>
Runoff Coefficient
Ciliwung Watershed

BATAS DAS/SUBDAS
JALAN
SUNGAI

NILAI KOEFISIEN ALIRAN

<table>
<thead>
<tr>
<th>Penggunaan</th>
<th>Count</th>
<th>KOEF_C</th>
<th>LUAS (Ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Danau/Waduk</td>
<td>115</td>
<td>0.010</td>
<td>5446.0</td>
</tr>
<tr>
<td>Hutan</td>
<td>5</td>
<td>0.100</td>
<td>1243.0</td>
</tr>
<tr>
<td>Hutan Belukar</td>
<td>37</td>
<td>0.200</td>
<td>24591.0</td>
</tr>
<tr>
<td>Hutan Lindung</td>
<td>11</td>
<td>0.100</td>
<td>15274.0</td>
</tr>
<tr>
<td>Kebun Campuran</td>
<td>73</td>
<td>0.500</td>
<td>151961.0</td>
</tr>
<tr>
<td>Pelabuhan Udara</td>
<td>1</td>
<td>0.600</td>
<td>1762.0</td>
</tr>
<tr>
<td>Pemukiman</td>
<td>845</td>
<td>0.800</td>
<td>141219.0</td>
</tr>
<tr>
<td>Perkebunan</td>
<td>34</td>
<td>0.400</td>
<td>16140.0</td>
</tr>
<tr>
<td>Rawa</td>
<td>41</td>
<td>0.010</td>
<td>13941.0</td>
</tr>
<tr>
<td>Rumput</td>
<td>86</td>
<td>0.350</td>
<td>6692.0</td>
</tr>
</tbody>
</table>
The five-year moving average of daily **minimum streamflow** for both stations were decreased with $r = 0.97$ and 0.93, respectively.

Daily minimum discharge at the Ciliwung Watershed

- **Qmin Sugutamu (R-5)**
- **Qmin Katulampa (R-5)**
- **Trend Qmin Sugutamu**
- **Trend Qmin Katulampa**

Equations:

- $ys = -0.9505x + 13.022$
 $R^2 = 0.87$
- $yk = -0.8797x + 8.5178$
 $R^2 = 0.92$
The five-year moving average of daily maximum streamflow for both Katulampa and Sugutamu hydrological stations were increased overtime with $r = 0.77$ and 0.83, respectively.

\[y_s = 16.587x + 57.224 \]
\[R^2 = 0.69 \]

\[y_k = 3.0121x + 39.913 \]
\[R^2 = 0.58 \]
Backwater effect in the coastal area of Jakarta [2010]
In 1990, just 12% or 1,600 ha coastal area of Jakarta under sea level. In just 20 years [2010], 58% or more of 8,000 ha coastal area of Jakarta under the sea level. Without significant efforts, it is predicted that in 2030, 90% or 12,500 ha of coastal Jakarta will be inundated.
Desirable Landscape for Minimizing Downstream Sedimentation
Managed *Pinus Merkusii* forest plantation in Central Java: reduced surface run-off and soil erosion
Managed *Agroforestry* in West Java: reduced surface run-off and soil erosion
Managed Dry-land Farming in Central Java: reduced surface run-off and soil erosion
Strategy for better Landscape Management and for Flood Mitigation

- Establish an improved water resource-related organization focusing more on a multi-disciplinary and transboundary institutional approach for an integrated spatial planning. This organization should consider the important of upstream-downstream cash flow as part of the compensation mechanism.

- It is important to involve large companies in Jakarta such as the Jakarta International Airport, the Jakarta International Seaport, and other Jakarta-based large companies that suffered from flooding to contribute financially to the proposed program.

- To encourage rural people to participate, it is important to implement incentive and dis-incentive system. This large scale movement program should involve economists, sociologists, anthropologists, and other social scientists for getting a widespread public acceptance.
Master Plan 2014-2025

National Capital Integrated Coastal Development [NCICD]
Jakarta Coastal Development

- National Development Planning Agency
- Ministry of Public Works
- Government of the Netherlands
Development Plan for Jakarta’s Coastal Area [Great Sea Wall]

AS HARBOUR, INDUSTRIAL, AND WAREHOUSE FUNCTIONS THROUGH LAND RECLAMATION DAN REVITALIZATION

WESTERN AREA (HOUSING)
- Pantai Kapuk
- PLUIT
- Soekarno-Hatta International Airport

CENTRAL AREA (CBD)
- Jakarta Old City
- Ancol
- Outer Ring Road
- Inner Ring Road

EASTERN AREA (INDUSTRY)
- Outer Outer Ring Road
- Outer Ring Road
- Harbour Toll Road
- Port of Tanjung Priok
- Karang Tanjung Toll Road
- Marunda
- Rencana Rel KA

AS HARBOUR, INDUSTRIAL, AND WAREHOUSE FUNCTIONS THROUGH LAND RECLAMATION DAN REVITALIZATION
POISED IN THE MIDDLE OF THE GREAT WING-SHAPED SEA WALL WILL BE A NEW CENTRAL CITY AREA, POSITIONED AS A NATURAL EXTENSION OF THE CENTRAL SPINE AREA OF JAKARTA, IT WILL PROVIDE A SPECTACULAR AND WARM WELCOME TO ALL WHO COME TO THE NATION’S CAPITAL.

3500-4000 ha of land reclamation

Closed giant reservoir, giant wall, & giant pump.
New Airport

Sea

Reclamation for commercial uses
MULTI PURPOSE DEEP TUNNEL AS EMERGING SOLUTION INTEGRATED WATER MANAGEMENT
Thank You All